Severi inequality for varieties of maximal Albanese dimension

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On surfaces of general type with maximal Albanese dimension

Given a minimal surface S equipped with a generically finite map to an Abelian variety and C ⊂ S a rational or an elliptic curve, we show that the canonical degree of C is bounded by four times the self-intersection of the canonical divisor of S. As a corollary, we obtain the finiteness of rational and elliptic curves with an optimal uniform bound on their canonical degrees on any surface of ge...

متن کامل

Triangulations and Severi Varieties

We consider the problem of constructing triangulations of projective planes over Hurwitz algebras with minimal numbers of vertices. We observe that the numbers of faces of each dimension must be equal to the dimensions of certain representations of the automorphism groups of the corresponding Severi varieties. We construct a complex involving these representations, which should be considered as...

متن کامل

Surfaces of Albanese General Type and the Severi Conjecture

In 1932 F. Severi claimed, with an incorrect proof, that every smooth minimal pro-jective surface S such that the bundle Ω 1 S is generically generated by global sections satisfies the topological inequality 2c 2 1 (S) ≥ c2(S). According to Enriques-Kodaira classification, the above inequality is easily verified when the Kodaira dimension of the surface is ≤ 1, while for surfaces of general typ...

متن کامل

Algebraic Fiber Spaces Whose General Fibers Are of Maximal Albanese Dimension

The main purpose of this paper is to prove the Iitaka conjecture Cn,m on the assumption that the sufficiently general fibers have maximal Albanese dimension.

متن کامل

Introducing Hurwitz Numbers for Severi-type Varieties

Fixing an arbitrary point p ∈ CP and a triple (g, d, `) of nonnegative integers satisfying the inequality g ≤ (d+l−1 2 ) − (l 2 ) , we associate a natural Hurwitz number to the (open) Severi-type varietyWg,d,` consisting of all reduced irreducibke plane curves of degree d + l with genus g and having an ordinary singularity of order l at p (the remaining singular points of such curves being usua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2014

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-014-1025-7